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BIFURCATION OF SOLUTIONS OF STATICS PROBLEMS 
OF THE NON-LINEAR THEORY OF ELASTICITY* 

A.A. ZELENIN and L.M. ZUBOV 

The problem of the bifurcation of the equilibrium mode of an elastic body 

is considered on the basis of the three-dimensional equations of the non- 

linear theory of elasticity. Necessary and sufficient conditions for the 

solvability of an inhomogeneous linearized boundary value problem are 

derived for conservative external forces and are utilized to formulate 

the bifurcation equation. In application to three-dimensional problems 

of the non-linear theory of elasticity, a procedure is constructed for 

the Lyapunov-Schmidt method in operator form which enables a number of 

solutions to be determined that branch off at the bifurcation point and 

enable asymptotic representations to be obtained for solutions under the 

almost critical loads. The general theory is illustrated by investigation 

of the post-critical behaviour of a thick-walled cylinder loaded on the 

side surface. 

1. The equilibrium of an elastic body is described by the equations /l/ 

V,D + k=O, D(P, C(r))=dW/dC 

C=VR, r=x& V=i,B/Oxl, 
11.1) 

Here D is the Piola stress tensor, W is the specific strain potential energy, C is the 

spatial gradient, V is the nabla operator in the reference (undeformed) configuration, zt 

are Cartesian coordinates of the undeformed body, ih- are the Cartesian coordinate directions, 
R is the position vector of the position of a point of the deformed body, and k is the 

volume force intensity per unit volume-of the reference configuration. The explicit dependence 

of the Piola tensor on r, i.e., on the Lagrange coordinates in (1.11, holds for an inhomo- 

geneous body. For a homogeneous body D = D (C(r)). 
We will assume that the body surf&e (J with unit external normal n in the reference 

configuration consists of three parts. The external load n.D = f is given on ul, therotation 

vector R = R, on u2r and particles of the surface c 3 in the deformed state made frictionless 
centact with the smooth solid surface D. 

The external force intensities k and f are not necessarily given functionsoftheLagrange 
coordinates. They can depend in a given manner on the vector R and the spatial gradient C. 
This dependence is later assumed such that the load is conservative. This means that the 
elementary work of the external load is a variation of a certain functional @ 

Sk[rT R(r), C(r)]-GRdu + if [r, R(r), C(r)].6Rdu==&B 
11 0, 

(1.2) 

where u is the volume occupied by the elastic body in the reference configuration. 

Let R =p(r) be a certain known solution of the equilibrium problem that governs the 

subcritical state of the elastic body. We set R =p i-w to study the solutions close to 

P* Using (l.l), we write the non-linear boundary value problem in the vector w as follows 

V-D'+k'=-Kinu (1.3) 

n-D’--f=F onus, w=O ono2 0.4) 

n.D'.G+SB.w=r, N.w=cp onus (1.5) 

r.N=O, D’ = -&D (r, Vp + qvw) It13 

f.__&f(r,p+qW.Pp+ ?vw)IQ=o 
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G=E-NN, Bz - G.(Vp)-I.VN 

S-N.T.N drt(Vp)(n.A-'.n)lh, A=Vp*(VpjT 

Here N is the normal to the body surface in the deformed state that corresponds to the 
fundamental solution p, B is the second fundamental tensor /2/ of the surface n,E is the 
unit tensor, and T is the Cauchy stress tensor in the fundamental (subcritical) state. The 
difference expressions D',k',f' in (1.3)-(1.5) are linear in w. The expressions K, F.T. (i: 
do not contain linear terms in w. This means that if we set w =-= &we, the expansion of these 
expressions in powers of the parameter P will start with terms of not less than the second 
order. 

The linearized boundary conditions obtained in /3/ on the contact surface of a pre- 
stressed elastic body with an absolutely rigid body are utilized in (1.5). 

The fundamental solution p depends on the loading parameter p. Therefore, the parameter 
p takes part in the formulation of the boundary value problem (1.3)-(1.5). 

Discarding non-linear terms in (1.3)-(l..5), we obtain a homogeneous linear boundary 
value problem 

V.D'+ k'--_O inn (2.8) 

n.D'-_ = 0 on ol? w =O on tr2 (1.7) 

n.D'.G+SB.w=o, K-w=0 on08 (1.8) 

For certain values of the parameter p called the critical loads, problem (l-6)-(1.8) for 
the vector w can have non-trivial solutions. Let p0 be one of the eigenvalues of the boundary 
value problem (1.6)-(1.8). In the general case several eigenfunctions (buckling modes), which 
we denote by $,, (m = 1, 2,. ..N), can correspond to the eigenvalue po. 

For p = p. the boundary value problem (1.3)-(1.5) is solvable not for any right sides 
F, -K,~,cp. To derive the solvability conditions, we multiply the equilibrium Eq. (1.3) by 
the eigenvector-function $% and integrate over the domain V. Applying the divergence theorem, 
taking account of the indentity /4/ 

D'(VW)..(~~~)~ =_- D.(V~~)..(VW)~ (1.8) 

and the boundary conditions (1.41, (1.5), (1.7), we obtain 

~k'(w,Vw)*%p&u -i_ SE.(w,Vw)-I&&- (2.10) 
v a, 

Ss~m.B.Wda-~D'(V~m)..(VW)~dU$- 

FK.$,,,dv+ {F.;&J+- Sr.&,dcr=O 
* “I 0% 

On the basis of (1.4)-(1.7) we have 

(1.41) 

Relationship (1.21, expressing the existence of the external force potential, implies 
the equality /5/ 

~k'(w,Vw).~,dv+ ~f'(w,Vw).~~do= 
D 

Sk+@,, Vg,)awd:+ s1'(qm, V%).wdn 
" 0, 

(1.12) 

we obtain from (l.l.O)-fl.12)and the symmetry property of the tensor B 

SK=*mdu+S F*&,dts-+ SI*&+do-- s~n.~(V~~).N~~=(~, (1.13) 
li 0‘ 0s al 

Relationships (1.13), derived as necessary conditions for solvability, are, under certain 
assumptions formulated below, also the sufficient conditions for solvability of the problem 
(1.3)-(1.5) for p ==pa, 
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2. We assume that the elastic material satisfies the strict Hadamard inequality /6/ 

where a,, b, are components of two arbitrary non-zero vectors a, b. It follows from this 
inequality that the system of equations obtained from (1.6) by projections on the coordinate 
axes i, will be strongly elliptic, and homogeneous with an order of homogeneity of two. 

we also assume that UC= s1 U u%, while the boundary conditions (1.7) are supplementary 

17/. Since it is difficult to establish supplementarity of the boundary conditions for an 
elastic material of general form and for an arbitrary fundamental solution, this requirement 
should be confirmed in each specific problem. We note that the kinematic boundary condition 
w = 0, which is a Dirichlet type condition, satisfies the supplementarity requirement for 
any strongly elliptic systems /%/. 

Under the requirements stated, the boundary value problem (1.6), (1.7) is elliptic /7/ 
and corresponding to it is the operator A acting from the Banach space El, the vector-functions 
W whose components belong to the Sobolev space W,'(u) and satisfy the boundary conditions 

on u,, into the Banach space Ez consisting of the set of functions 12 = (--K,F), in which the 
components of the vector-functions K belong to the Lebesgue space L, (v) while the components 
of the vector-functions F belong to the Slobodetskii space w;'a(Ur)- Moroever, by virtue of 
(l.S), (l-12), the following Green's formula is valid for any vector-functions W,E El, WtE 

E, 

SiV.WVw1)l .w>du-- S[~.D.(V’NS.W~-~.(~V~,VW~).W~]~~~ (2.l) 
v 

s [V.D’(vw’B)].W1du” s [n.D'(VwL).w~-~(~~,Vw,)~wr]do 
e 0, 

It follows from (2.1) that problem (1.6), (1.7) is formally selfadjoint. Then according 
to /7/, relationships (1.13) in the case u = ~1 U 0% are not only necessary but sufficient 
for problem (1.3)) (1.4) to be solvable under the condition that the right side h = (-K, F) 
belong to the space E2. 

we write the boundary value problem (1.3), (1.4) in the operator form 

Aw =h (w) (2.2) 

Here A is a linear operator, and h (w) is a non-linear operator acting from El into E,. 
We let EIV denote the subspace of zeros of the operator A of dimensionality N with the 

basis vector-functions wr, . . ..w.v. E,"ON is the supplement of the subspace ErN to El. Let 
A* be the contraction of the operator A in ET.*+ Unlike the operator A it will have a 
bounded inverse operator. 

To investigate the equilibrium modes of an elastic body under almost critical loads, we 
Set 

p=po+-h, w-v-t-u, “==&qQ, m-N 
UEhl 

i=1 

where X is a small parameter. The operator Eq. (2.2) takes the form 

A*u=h(v-+u,h) (2.3) 

BY virtue of the theorem on implicit operators /9/, in a sufficiently small neighbourhood 
of the point u = 0, v = 0,h = 0 there exists a unique solution fo (2.3) u = u (%-,a) = u (Et, 

. . ., ENi % that is continuous and such that u (0,O) = 0. Substituting this solution into 
the solvability conditions (1.13), we obtain the bifurcation equationsfromwhich the values 
of the parameters Et, . . . . $,~i are determined. A detailed examination of the bifurcation 
equations is contained in /9/. 

3. To illustrate the approach elucidated above for studying the bifurcation of solutions 
of the static problem we will consider the buckling of a thick hollow cylinder clamped between 
two rigid fixed plates subjected to an external hydrostatic pressure of intensity g. 

When there are no mass forces the equilibrium Bqs.(l.l) have the-form 

$3.1) 

Here r,@,z are cylindrical coordinates in the undeformed state of the body, and e,,ea, 
i, are their corresponding basis vectors. The boundary conditions of the problem formulated 
are 

e,. D IrzrI = 0, e,.D IT=,, = - qle,. (Up; J = det c 63.2) 
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where r0, rl are the outer and inner radii of the cylinder. 
As the governing relationship we take the model of a semilinear material /l/ (U is 

the deformation tensor, and p., v are constants) 

.=2,(& -1 u-‘.C -+ 2pc 
) 

(3.3) 

u=(C.C~)‘J~, _Q=tru-3 

The boundary value problem (3.1)-(3.3) has the following axisymmetric solution /l/: 

P =.(C?a + Q2V) e, 4 i82, 91 = 
k--l--k 

k----_(l-Zv+k) 

,Qa =_= kP 
k--1--p(l-&*k) ’ 

k+ 

(3.4) 

We shall seek the plane equilibrium modes close to the solution (3.4), i.e. we set 

D = P i u (*I, 0) e, + v (rl, 6) ea (3.5) 

Taking account of (3.51, we write the boundary value problem (1.31, (1.4) in the form 

2 (x, D)w (x) = -K (w, x) (3.6) 

Here 

b (5, D) w (x) = F (w, cc) for q = 1, q = k, (Xi) 

K, = --(I - v)-l (&M1 - q-Y&N1 + Q3-1q-1c?lN) 

K, = -(I - v)-’ (&N, + q-%‘$f~ - &-1&N) 

F, = (1 - 2v)_' (M, - I), F, = (1 - 2v)-1(N1 - &-IN) 

Q, = ZQ1, VI = (1 - v)(1 - 2%9-l 

B = (i - v)-‘Qa-l [(I - v) Q3 - II 

NI = NQ-‘, M, = MQ-‘, Q = (M2 + iV)‘iz 

1 

l-p, q-=1 
PI= 1 q = kl 

The differential expressions 1 and b on the left-hand sides of (3.61, (3.7) are linear. 
The differential expressions K and F do not contain linear components. It can be shown 
that for v+O.5 system (3.6) is regularly elliptic /7/ while the boundary conditions (3.7) 
are supplementary.&t us set the linear operator Aw=(lw,bw), which we define in the 
Banach space E,, correspondingtothe left-hand sides of (3.6) and (3.71. 

We assume that the desired functions U, V belong to the space W%‘(U), where v: (k,< 

q < 2, 0 < 8 < 270. Then it can be shown that the right-hand sides of (3.6) and (3.7) belong 
to E,. This enables us to write the boundary value problem (3.6), (3.7) in the operator 
form 

Aw = 2, T zs (-K, F) (3.8) 

The necessary and sufficient conditions for the solvability of (3.8) will, in conformity 
with (1.13), have the form 

1227 2.r 

-1 SrlK.9,drldO-vy;“S11F.‘9,(1’8I~~:,=O, m=1,2 ,... (3.9) 
h‘, 0 0 
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Here $,,, = (I$;~,$~~) are eigenvectors of the operator A that form the basis of the sub- 

space of zeros of this operator. 
To find the critical values of the parameter p for which bifurcation of the cylinder 

equilibrium occurs, we consider the linearized problem 

Aw = 0 (3.10) 

Following /l/, we seek the eigenfunctions of problem (3.10) in the form 

u, = a, (n)cos no, u, = b,(q) sin n.0 ,(3.11) 

bs (q) = 0, n = 0, 1, 2, . . . 

We substitute (3.11) into the left-hand side of (3.6) and we solve them for a,, b,, for 

K = 0. we consequently obtain 

aa-+Aq++, bo=O (3.12) 

b 
n 

= 2B + D (n + 2) A 1 
4(n+‘) n 

,,,,,+I _ D (n - 2, - 2B 
4 (n - 1) 

B 
II nn_1 - 

C,,q”- + D, 1 “+I ’ n = 2,3,4, . 
? 

Here D = 1 - B, Ao, Co, Ai, Biy Ci, Di (i = 1, 2, . . . ) are constants of integration. 

Substituting (3.11) into the boundary conditions (3.7) with the zero right-hand sides, 

we take account of (3.12) to obtain a system of equations to determine the constants of in- 

tegration. For each n = 2,3, . . . we find the eigenvalues of the operator A by equating its 

determinant to zero 

(1 - k)S 
p=pO = Z(l--)+(I-k)S ’ s= k-_y 

V+k*+kl/(l-k)a+4v 

Y= 
n* (1 -k)* 

kn+k-“-2’ 
n=2,3,... 

Solving the system obtained for the case n= 1 we have A, = B, = D, = 0, and C, is an 
arbitrary constant that corresponds to the motion of a cylinder as an absolutely rigid body. 

Consequently, this case is eliminated from consideration. For n = 0 we have Ao = Bo = 0. 
The critical pressure pL is the minimum eigenvalue from the set of eigennumbers po(n,k), 

where n takes integer values 2,3,..., successively, for fixed k. It can be shown that the 

eigenvalues p. are always simple and take on the least value for n = 2. 

Let h. be a small additional loading parameter. Then setting p =pofh the Eqs.(3.8) 

can be written in the form(A, is the operator A in which the quantity p is replaced by the 

eigenvalue po) 

Aow=t--Aw+Aow~h(w), h(w)~(-t,T) 

t = (K’, KS), T = (F’, P) 

Ka = K, - q-‘a2N (A - A,,), Ka = K, + fA -A.,) a,N 

F’ = F, - pzq-’ (u + a,v), FZ = F, - vIN (A - A,,) - 
z. p2q-l (u - a+) 

h, Tj=l 
?Jn= 0 

L ‘1 = 1El 

We shall seek small solutions of (3.13) in the form of the series 

(3.13) 

(3.14) 

(3.15) 

Here E is a formal parameter, g,, = (&,, &,) is an eigenfunction of the operator -40. Ex- 
panding terms containing u and v in power series in u,u on the right side of (3.13) and 
the terms containing p in power series in h, by taking account of (3.15) we obtain 

h (w)'i+~,lh$~', htj G (- tijv T,j) (3.16) 

‘ij 3 (Kij’y KQ’), Tij s (~'~~1, FijZ) 
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where Kijl, Kij’, Fiji, Fij2 are expansion coefficients of the functions K', K', F', F' defined 
by (3.14). 

Substituting (3.15) into (3.13) and equating coefficients of identical powers of E'k' 
and taking account 

from which we find 
To obtain the 

(3.3) for (3.13). 

of (3.16), we obtain a recurrent system to find wij 

Ao*w,j=h,j (3.17) 

all the wij. Here AO* is the contraction of the operator A0 on _!?;"-I. 

bifurcation equation we substitute (3.15) into the solvability condition 

We consequently obtain 

The first coefficients of (3.18) will have the form 

The bifurcation Eq.(3.18) approximately takes the form LsoE3 f L,,&=O, from which it 
follows that E; =+-(L,,L,~-'h)'~~ + o (h”z), and the solution (3.15) of (3.13) is written in the form 

Depending on the sign of (-LllL30-1) two new solutions occur in one of the semicircles 

(PO - a,P0) or (pO,po i E), while new solutions will not occur in the other. 
A numerical investigation of the coefficients L,,,L 30 for the case of the minimum eigen- 

value p* showed that always Lll< O;L,,,> 0 for k, > 0.5098; L,,< 0 for k, < 0.5097 for all 
allowable values of Y. 

Therefore, for cylinders whose geometrical parameter is characterised by the inequality 

k,> 0.5098 (thin-walled cylinders are also included here), equilibrium modes different from 

the axisymmetric state (3.4) exist for loads greater than the critical p*. For thick-walled 

cylinders (k,< 0.5097), equilibrium modes close to axisymmetric exist only for pressures less 

than the critical value. 
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